$V = 958.52 (15) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 1.40 \text{ mm}^-$

 $0.22 \times 0.16 \times 0.12 \text{ mm}$

5691 measured reflections

2178 independent reflections

2008 reflections with $I > 2\sigma(I)$

Z = 2

T = 291 K

 $R_{\rm int} = 0.011$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis[*µ*₂-2-(2-pyridylmethylamino)ethanesulfonato]cadmium(II)]

Zhong-Xiang Du* and Xin-Hong Chang

Department of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China Correspondence e-mail: dzx6281@126.com

Received 5 November 2009; accepted 18 November 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.049; data-to-parameter ratio = 16.4.

The title compound $[Cd(C_8H_{11}N_2O_3S)_2]_n$, is a two-dimensional coordination polymer based on a Cd²⁺ atom and deprotonated 2-(2-pyridylmethylamino)ethanesulfonic acid (Hpmt). The complex has molecular symmetry C_i as a consequence of the Cd^{II} being located on an inversion centre. Two N atoms of each pmt⁻ ligand coordinate to the Cd²⁺ ion and its sulfonate O atom bonds to an adjacent Cd²⁺ ion. 24membered (-Cd-N-C-C-S-O-)₄ rings are formed between neighbouring Cd²⁺ ions; these are interconnected, forming a two-dimensional layer structure. In respect to stereogenic amino N atom and the inversion symmetry of the complex, the compound is a 1:1 racemate. The crystal packing is stabilized by intermolecular N-H···O hydrogen bonds and further connected by $\pi - \pi$ stacking interactions between the pyridyl rings [average interplanar distance and centroidcentroid separation = 3.582(1) and 3.634(1)Å, respectively], forming a three-dimensional supramolecular architecture.

Related literature

For different coordination modes of the pmt⁻ ligand in complexes derived from Hpmt, see: Du & Zhang (2009); Li et al. (2006, 2007a,b, 2008a,b); Liao et al. (2007).

Experimental

Crystal data

Ν

$Cd(C_{2}H_{4}N_{2}O_{2}S)_{2}$	
A = 542.90	
$A_r = 542.90$	
= 8.8082 (8) Å	
$= 14.0206 (12) \text{\AA}$	
= 7.0040 (7) Å	
= 1.9040 (7) A	
J = 105.579(1)	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.749, T_{\max} = 0.849$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	133 parameters
$wR(F^2) = 0.049$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
2178 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1 Se

elected	bond	lengths	(A).	

Cd1-N1 $Cd1-O2^{i}$	2.2853 (14) 2 3496 (14)	Cd1-N2	2.3979 (15)
Symmetry code: (i)	$-r \pm 1$ $y = \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$		

Symmetry code: (i) $-x + 1, y - \frac{1}{2}$,

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O3^{ii}$	0.91	2.26	3.089 (2)	152
Symmetry code: (ii) x	$-y + \frac{1}{2}, z + \frac{1}{2}$			

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (No. 20771054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2239).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Du, Z.-X. & Zhang, G.-Y. (2009). Acta Cryst. E65, m706.
- Li, J.-X., Jiang, Y.-M. & Chen, M.-J. (2008a). J. Coord. Chem. 61, 1765–1773.
- Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.
- Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008b). J. Chem. Crystallogr. 38, 711-715.
- Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007a). Acta Cryst. E63, m213-m215.
- Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007b). Acta Cryst. E63, m601-m603.
- Liao, B.-L., Li, J.-X. & Jiang, Y.-M. (2007). Acta Cryst. E63, m1974.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m1655 [doi:10.1107/S1600536809049162]

Poly[bis[μ_2 -2-(2-pyridylmethylamino)ethanesulfonato]cadmium(II)]

Z.-X. Du and X.-H. Chang

Comment

In the previous literatures, several complexes derived from Hpmt have been reported. Among them, pmt⁻ ligand displays different coordination modes, such as tridentate chelate (Du & Zhang, 2009; Li *et al.*, 2006, 2008*a*; Liao *et al.*, 2007), μ_2 bridge(Li *et al.*, 2007*a*, 2008*b*) and μ_3 bridge (Li *et al.*, 2007*b*). In this paper, we describe another new complex of pmt⁻, (I), Figure 1.

Compound 1 is a two-dimensional coordination polymer and the repeating unit comprises one Cd^{2+} ion and two pmt⁻ ligands(Fig. 1, Table 1). Cd^{2+} ion situates on a centre of symmetry and is six-coordinated with four N atoms from two pmt⁻ ligands along with two sulfonate O atoms belonging to another two ligands, showing a distorted octahedral geometry (Table 1). The four N atoms from two pmt⁻ ligands define the equatorial plane with the Cd centre located in the plane, and two O atoms are at the axial positions with O2A—Cd1—O2B angle of just 180°[Symmetry codes: (A)1 - *x*, -1/2 + y, 0.5 - z; (B)*x*, 0.5 - y, -1/2 + z]. Each pmt⁻ plays as a μ_2 bridge to connect two Cd²⁺ ions and each Cd²⁺ ion links four pmt⁻ ligands, forming an infinite two-dimensional layer structure with (4, 4) topology (Figure 2). The network is based on (Cd(pmt))₄ rhombus, a 24-membered metal-ligand ring (-Cd—N—C—C—S—O–)₄ formed by four pmt⁻ and four quadruply connected Cd²⁺ ions. The edge Cd···Cd distance of the rhombus is 8.048 (3)Å and the Cd···Cd separations through the diagonal of the rhombus are 7.904 (2)Å and 14.021 (1) Å, respectively (Figure 2).

The two-dimensional layer is stabilized by intermolecular N—H···O hydrogen bonds (Figure 3 & Table 2). The interlayers are further connected by π - π stacking interactions of parallel pyridine rings of adjacent layers. The interplanar average distance and ringcentroid separation distance are 3.582 (1)Å and 3.634 (1) Å, respectively. Thus, the three-dimensional supramolecular architecture of (I) is formed (Figure 4).

Experimental

The ligand Hpmt was prepared according to the method of Li *et al.*, 2006. A water solution (5 ml) of ligand Hpmt (2 mmol, 0.432 g) was added dropwise to a solution of CdCl₂. 2.5H₂O (0.228 g, 1.0 mmol) in methanol (8 ml), then the obtained mixture was stirred at 333 K for 3 h. After that, the mixture was basified with KOH (1 mol/l) to a pH of 7.5–8.0 and continued stirring for another 4 h, filtrated. Two weeks later, colourless claviform crystals were grown from the filtrate by slow evaporation. Analysis, found: C 35.40, H 4.02, N 10.36, S 11.36%; C₁₆H₂₂CdN₄O₆S₂ requires: C 35.36, H 4.05, N 10.31, S 11.42%. IR (KBr, v, cm⁻¹): 771.2[γ (CC—H)], 745.7(γ CH₂); 1188.3, 1157.4, 1040.6(ν SO₃⁻); 1607.7, 1571.7(ν CC + ν CN); 3266.2(ν N—H). CCDC 614219.

Refinement

H atoms bonded to C were positioned geometrically with C—H distance of 0.93–0.97 Å, and treated as riding atoms, with $U_{iso}(H)=1.2U_{eq}(C)$. The N—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Figures

Fig. 1. The coordination of Cd^{2+} ion of (I) with the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted. [Symmetry codes: (A)1 - x, -1/2 + y, 0.5 - z; (B)x, 0.5 - y, -1/2 + z; (C)1 - x, -y, -z; (D)1 - x, 1/2 + y, 0.5 - z]

Fig. 3. The hydrogen bonding interactions in (I)(dashed lines) projected in the plane bc. H atoms on C atoms have been omitted.

Fig. 4. Packing diagram for (I), showing π - π stacking as dashed lines in the plane *ab*. H atoms on C have been deleted.

$Poly[bis[\mu_2-2-(2-pyridylmethylamino)ethanesulfonato]cadmium(II)]$

Crystal data	
$[Cd(C_8H_{11}N_2O_3S)_2]$	$F_{000} = 548$
$M_r = 542.90$	$D_{\rm x} = 1.881 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3852 reflections
a = 8.8982 (8) Å	$\theta = 2.4 - 28.2^{\circ}$
<i>b</i> = 14.0206 (12) Å	$\mu = 1.40 \text{ mm}^{-1}$
c = 7.9040 (7) Å	T = 291 K
$\beta = 103.5790 \ (10)^{\circ}$	Claviform, colourless
$V = 958.52 (15) \text{ Å}^3$	$0.22\times0.16\times0.12~mm$
<i>Z</i> = 2	

Data collection

Bruker APEXII CCD area-detector diffractometer	2178 independent reflections
Radiation source: fine-focus sealed tube	2008 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.011$
T = 291 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 11$
$T_{\min} = 0.749, \ T_{\max} = 0.849$	$k = -18 \rightarrow 15$
5691 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.049$	$w = 1/[\sigma^2(F_o^2) + (0.0237P)^2 + 0.5977P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2178 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
133 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 \boldsymbol{z}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x

y

 $U_{\rm iso}*/U_{\rm eq}$

supplementary materials

Cd1	0.5000	0.0000	0.0000	0.02456 (7)
S1	0.33469 (5)	0.35013 (3)	0.12343 (6)	0.02701 (10)
01	0.17221 (17)	0.35246 (12)	0.0384 (2)	0.0474 (4)
02	0.36412 (18)	0.38778 (10)	0.30088 (18)	0.0382 (3)
O3	0.43417 (19)	0.39430 (11)	0.0247 (2)	0.0446 (4)
N1	0.72897 (17)	0.05064 (11)	-0.05239 (19)	0.0265 (3)
N2	0.60386 (17)	0.11240 (10)	0.22587 (19)	0.0260 (3)
H2	0.5777	0.0929	0.3250	0.031*
C1	0.7692 (2)	0.04398 (15)	-0.2058 (2)	0.0342 (4)
H1	0.7061	0.0096	-0.2957	0.041*
C2	0.9010 (2)	0.08650 (17)	-0.2341 (3)	0.0409 (5)
H2A	0.9275	0.0800	-0.3406	0.049*
C3	0.9923 (2)	0.13852 (18)	-0.1025 (3)	0.0456 (5)
Н3	1.0805	0.1688	-0.1196	0.055*
C4	0.9522 (2)	0.14571 (16)	0.0561 (3)	0.0393 (5)
H4	1.0134	0.1805	0.1468	0.047*
C5	0.8193 (2)	0.10009 (13)	0.0778 (2)	0.0270 (4)
C6	0.7732 (2)	0.10068 (13)	0.2504 (2)	0.0289 (4)
H6A	0.8052	0.0413	0.3111	0.035*
H6B	0.8260	0.1525	0.3217	0.035*
C7	0.5616 (2)	0.21429 (13)	0.1977 (2)	0.0301 (4)
H7A	0.6054	0.2395	0.1055	0.036*
H7B	0.6048	0.2499	0.3031	0.036*
C8	0.3876 (2)	0.22747 (12)	0.1489 (2)	0.0289 (4)
H8A	0.3435	0.1996	0.2386	0.035*
H8B	0.3451	0.1940	0.0409	0.035*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.02285 (10)	0.02064 (10)	0.03077 (10)	-0.00396 (6)	0.00747 (7)	-0.00131 (7)
S1	0.0320 (2)	0.0237 (2)	0.0260 (2)	0.00119 (16)	0.00802 (17)	-0.00138 (16)
01	0.0355 (8)	0.0447 (9)	0.0561 (10)	0.0066 (6)	-0.0011 (7)	-0.0040 (7)
O2	0.0547 (9)	0.0275 (7)	0.0328 (7)	-0.0018 (6)	0.0109 (6)	-0.0074 (6)
O3	0.0567 (9)	0.0389 (8)	0.0447 (8)	0.0005 (7)	0.0249 (7)	0.0101 (7)
N1	0.0246 (7)	0.0267 (8)	0.0287 (7)	-0.0016 (6)	0.0071 (6)	0.0000 (6)
N2	0.0295 (7)	0.0237 (7)	0.0263 (7)	-0.0002 (6)	0.0098 (6)	0.0002 (6)
C1	0.0332 (10)	0.0393 (11)	0.0309 (9)	0.0007 (8)	0.0092 (8)	-0.0007 (8)
C2	0.0353 (10)	0.0545 (13)	0.0375 (10)	0.0039 (9)	0.0178 (9)	0.0075 (10)
C3	0.0289 (10)	0.0554 (14)	0.0563 (14)	-0.0057 (9)	0.0176 (9)	0.0085 (11)
C4	0.0274 (9)	0.0428 (11)	0.0468 (12)	-0.0094 (8)	0.0071 (8)	-0.0037 (9)
C5	0.0234 (8)	0.0245 (8)	0.0324 (9)	0.0015 (6)	0.0052 (7)	0.0018 (7)
C6	0.0271 (9)	0.0294 (9)	0.0277 (8)	-0.0013 (7)	0.0018 (7)	-0.0015 (7)
C7	0.0336 (9)	0.0217 (8)	0.0361 (9)	-0.0005 (7)	0.0103 (8)	-0.0035 (7)
C8	0.0332 (9)	0.0226 (8)	0.0316 (9)	-0.0006 (7)	0.0089 (7)	-0.0056 (7)
Geometric param	neters (Å, °)					

Cd1—N1 2.2853 (14) C1—C2 1.380 (3)

Cd1—N1 ⁱ	2.2853 (14)	C1—H1	0.9300
Cd1—O2 ⁱⁱ	2.3496 (14)	C2—C3	1.370 (3)
Cd1—O2 ⁱⁱⁱ	2.3497 (14)	С2—Н2А	0.9300
Cd1—N2	2.3979 (15)	C3—C4	1.385 (3)
Cd1—N2 ⁱ	2.3979 (15)	С3—Н3	0.9300
\$1-01	1.4447 (15)	C4—C5	1.390 (3)
S1—O3	1.4496 (15)	С4—Н4	0.9300
S1—O2	1.4635 (14)	C5—C6	1.514 (2)
S1—C8	1.7821 (18)	С6—Н6А	0.9700
O2—Cd1 ^{iv}	2.3497 (14)	С6—Н6В	0.9700
N1—C5	1.341 (2)	С7—С8	1.516 (3)
N1—C1	1.346 (2)	С7—Н7А	0.9700
N2—C7	1.481 (2)	С7—Н7В	0.9700
N2—C6	1.483 (2)	C8—H8A	0.9700
N2—H2	0.9100	C8—H8B	0.9700
N1—Cd1—N1 ⁱ	180	N1—C1—H1	118.9
N1—Cd1—O2 ⁱⁱ	89.37 (5)	C2—C1—H1	118.9
N1 ⁱ —Cd1—O2 ⁱⁱ	90.63 (5)	C3—C2—C1	118.77 (19)
N1—Cd1—O2 ⁱⁱⁱ	90.63 (5)	C3—C2—H2A	120.6
N1 ⁱ —Cd1—O2 ⁱⁱⁱ	89.37 (5)	C1—C2—H2A	120.6
O2 ⁱⁱ —Cd1—O2 ⁱⁱⁱ	179.999 (1)	C2—C3—C4	119.59 (19)
N1—Cd1—N2	74.13 (5)	С2—С3—Н3	120.2
N1 ⁱ —Cd1—N2	105.87 (5)	С4—С3—Н3	120.2
O2 ⁱⁱ —Cd1—N2	83.89 (5)	C3—C4—C5	119.02 (19)
O2 ⁱⁱⁱ —Cd1—N2	96.11 (5)	C3—C4—H4	120.5
N1—Cd1—N2 ⁱ	105.87 (5)	C5—C4—H4	120.5
N1 ⁱ —Cd1—N2 ⁱ	74.13 (5)	N1—C5—C4	121.17 (17)
O2 ⁱⁱ —Cd1—N2 ⁱ	96.11 (5)	N1—C5—C6	116.99 (15)
O2 ⁱⁱⁱ —Cd1—N2 ⁱ	83.89 (5)	C4—C5—C6	121.80 (17)
N2—Cd1—N2 ⁱ	180.0	N2—C6—C5	111.41 (14)
O1—S1—O3	114.25 (10)	N2—C6—H6A	109.3
O1—S1—O2	111.86 (9)	С5—С6—Н6А	109.3
O3—S1—O2	111.57 (9)	N2—C6—H6B	109.3
O1—S1—C8	106.47 (9)	С5—С6—Н6В	109.3
O3—S1—C8	107.12 (9)	Н6А—С6—Н6В	108.0
O2—S1—C8	104.88 (9)	N2—C7—C8	111.36 (15)
S1—O2—Cd1 ^{iv}	146.26 (9)	N2—C7—H7A	109.4
C5—N1—C1	119.27 (16)	С8—С7—Н7А	109.4
C5—N1—Cd1	114.90 (11)	N2—C7—H7B	109.4
C1—N1—Cd1	125.37 (13)	С8—С7—Н7В	109.4
C7—N2—C6	109.95 (14)	H7A—C7—H7B	108.0
C7—N2—Cd1	118.81 (11)	C7—C8—S1	111.93 (12)
C6—N2—Cd1	103.10 (10)	С7—С8—Н8А	109.2
C7—N2—H2	108.2	S1—C8—H8A	109.2
C6—N2—H2	108.2	С7—С8—Н8В	109.2

supplementary materials

Cd1—N2—H2	108.2	S1—C8—H8B	109.2
N1—C1—C2	122.17 (19)	H8A—C8—H8B	107.9
O1—S1—O2—Cd1 ^{iv}	-124.02 (16)	Cd1—N1—C1—C2	171.82 (15)
O3—S1—O2—Cd1 ^{iv}	5.3 (2)	N1—C1—C2—C3	-1.1 (3)
C8—S1—O2—Cd1 ^{iv}	120.97 (16)	C1—C2—C3—C4	1.3 (3)
O2 ⁱⁱ —Cd1—N1—C5	-71.71 (12)	C2—C3—C4—C5	-0.3 (3)
O2 ⁱⁱⁱ —Cd1—N1—C5	108.29 (12)	C1—N1—C5—C4	1.0 (3)
N2—Cd1—N1—C5	12.12 (12)	Cd1—N1—C5—C4	-171.65 (15)
N2 ⁱ —Cd1—N1—C5	-167.88 (12)	C1—N1—C5—C6	-176.72 (16)
O2 ⁱⁱ —Cd1—N1—C1	116.16 (16)	Cd1—N1—C5—C6	10.6 (2)
O2 ⁱⁱⁱ —Cd1—N1—C1	-63.84 (16)	C3—C4—C5—N1	-0.9 (3)
N2-Cd1-N1-C1	-160.01 (16)	C3—C4—C5—C6	176.77 (19)
N2 ⁱ —Cd1—N1—C1	19.99 (16)	C7—N2—C6—C5	-80.67 (18)
N1—Cd1—N2—C7	90.73 (12)	Cd1—N2—C6—C5	46.99 (15)
N1 ⁱ —Cd1—N2—C7	-89.27 (12)	N1—C5—C6—N2	-42.0 (2)
O2 ⁱⁱ —Cd1—N2—C7	-178.19 (12)	C4—C5—C6—N2	140.29 (18)
O2 ⁱⁱⁱ —Cd1—N2—C7	1.81 (12)	C6—N2—C7—C8	172.59 (14)
N1—Cd1—N2—C6	-31.13 (10)	Cd1—N2—C7—C8	54.25 (18)
N1 ⁱ —Cd1—N2—C6	148.87 (10)	N2—C7—C8—S1	177.53 (12)
O2 ⁱⁱ —Cd1—N2—C6	59.95 (10)	O1—S1—C8—C7	166.69 (13)
O2 ⁱⁱⁱ —Cd1—N2—C6	-120.05 (10)	O3—S1—C8—C7	44.07 (16)
C5—N1—C1—C2	0.0 (3)	O2—S1—C8—C7	-74.60 (15)
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) $-x+1$, $-x+1$, $-x+1$, $-x+1$, $-x+1$, $-z$; (ii) $-x+1$, $-x$	x+1, y-1/2, -z+1/2; (iii) x,	-y+1/2, $z-1/2$; (iv) $-x+1$, $y+1/2$, $-z+1/2$.	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2···O3 ^v	0.91	2.26	3.089 (2)	152
Symmetry codes: (v) x , $-y+1/2$, $z+1/2$.				

Fig. 2

Fig. 3

